Cannabinoids: A New Perspective on Epileptogenesis and Seizure Treatment in Early Life in Basic and Clinical Studies.

Spread the love

. 2021 Jan 12;14:610484.

doi: 10.3389/fnbeh.2020.610484. eCollection 2020.

Affiliations

Item in Clipboard

Angélica Vega-García et al. Front Behav Neurosci. .

Abstract

Neural hyperexcitability in the event of damage during early life, such as hyperthermia, hypoxia, traumatic brain injury, status epilepticus, or a pre-existing neuroinflammatory condition, can promote the process of epileptogenesis, which is defined as the sequence of events that converts a normal circuit into a hyperexcitable circuit and represents the time that occurs between the damaging event and the development of spontaneous seizure activity or the establishment of epilepsy. Epilepsy is the most common neurological disease in the world, characterized by the presence of seizures recurring without apparent provocation. Cannabidiol (CBD), a phytocannabinoid derived from the subspecies Cannabis sativa (CS), is the most studied active ingredient and is currently studied as a therapeutic strategy: it is an anticonvulsant mainly used in children with catastrophic epileptic syndromes and has also been reported to have anti-inflammatory and antioxidant effects, supporting it as a therapeutic strategy with neuroprotective potential. However, the mechanisms by which CBD exerts these effects are not entirely known, and the few studies on acute and chronic models in immature animals have provided contradictory results. Thus, it is difficult to evaluate the therapeutic profile of CBD, as well as the involvement of the endocannabinoid system in epileptogenesis in the immature brain. Therefore, this review focuses on the collection of scientific data in animal models, as well as information from clinical studies on the effects of cannabinoids on epileptogenesis and their anticonvulsant and adverse effects in early life.

Keywords: anti-inflammatory; cannabinoids; epileptogenesis; neurodevelopment; neuroprotection; pharmacokinetics.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1

Figure 1

Pharmacological effects of Δ9-THC and CBD. Δ9-THC is the main psychoactive component of C. sativa, which can behave as a selective agonist, partial agonist, inverse agonist, and antagonist of the Cb1 receptor, while when activating the Cb2 receptor it behaves as an inverse agonist. Activation of the Cb1 and Cb2 receptors stimulates GTPγS binding to cell membranes and inhibits cyclic AMP production. Also, Δ9-THC can inhibit 5HT3A receptor-mediated currents induced by 5-hydroxytryptamine (5HT); antagonizing receptor activation, possibly through an allosteric mechanism, by this same mechanism, Δ9-THC and CBD can enhance the activation of GlyR expressed in central tegmental area (ATV) neurons. Additionally, Δ9-THC activates the TRPV3 and TRPV4 receptors, which are nonselective calcium-permeable cation channels that, when activated, raise intracellular Ca2+ and consequently cause neuronal depolarization. Transient receptor potential (TRP) channels are a group of membrane proteins involved in the transduction of a large number of stimuli. Unlike Δ9-THC, CBD does not activate CB1 and CB2 receptors, which likely accounts for its lack of psychotropic activity. However, CBD interacts with many other, nonendocannabinoid signaling systems. It is a “multi-target” drug. At low micromolar to submicromolar concentrations, CBD is a blocker of the equilibrative nucleoside transporter (ENT), the orphan G-protein-coupled receptor GPR55, and the TRP of melastatin type 8 (TRPM8) channel. At higher micromolar concentrations, CBD activates the TRP of vanilloid type 1 (TRPV1) and 2 (TRPV2) channels while also inhibiting cellular uptake and fatty acid amide hydrolase—catalyzed degradation of anandamide.

Figure 2

Figure 2

Epileptogenesis and endocannabinoid system (eCBs). (A) Acute changes: increased intracellular Ca2+ flux, induction of early genes (IEGs) that alter synaptic function, decreased threshold to neuronal hyperexcitability, alteration of eCBs that modulates the balance between excitatory and inhibitory neurotransmission. (B) Sub-acute changes: synthesis of endocannabinoids (eCB) mediated by the increase in intracellular Ca2+, neuronal hyperexcitability and the demand for membrane phospholipids diacylglycerol lipase (DAGL) and N-acyl phosphatidyl ethanolamine-hydrolyzing phospholipase D (NAPE-PLD) to form 2-AG and AEA, respectively, and their degradation after the dissociation of CB1R and the activation of TRPTV1 by AEA, which triggers greater glutamate release and increases in intracellular Ca2+. The eCBs degrade rapidly, and 2-AG and AEA are catabolized by the enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively, which generate AA, PGs-Eas, PG-Gs, and Cox-2 to increase convulsive susceptibility, activation of astrocytes and microglia and increases in CB2R that promote the release of pro-inflammatory proteins IL1-β, Cox-2, TNF-α and iNOS, generating neuroinflammation, neuronal hyperexcitability, and neuronal death. (C,D) Chronic changes: neuronal death, the perpetuation of the neuroinflammatory response and dysregulation of eCBs that promote neurogenesis, formation of aberrant connections, expression of spontaneous seizures, and epilepsy.

Figure 3

Figure 3

Graph showing the mean ± SE of the latencies of Status epilepticus (SE) induced by KA. (A) Low doses: the 20 and 25 mg/kg CBD groups showed an increase of SE latencies with a significant difference ****p < 0.0001 compared with the KA group. However, the 30 and 35 mg/kg groups of CBD showed a reduction in SE latencies though with a significant difference, **p < 0.01 and ***p < 0.001, respectively, compared with the KA group. (B) The high-dose 40 and 60 mg/kg groups of CBD showed an increase in the latencies of SE with a significant difference, **p < 0.01 compared with the KA group. The 80 and 100 mg/kg CBD groups did not show significant differences compared with the KA group. One-way ANOVA followed by Bonferroni’s post hoc test, p < 0.05 (unpublished data).

References

    1. Abu-Sawwa R., Scutt B., Park Y. (2020). Emerging use of epidiolex (Cannabidiol) in epilepsy. J. Pediatr. Pharmacol. Ther. 25, 485–499. 10.5863/1551-6776-25.6.485 – DOI PMC PubMed
    1. Alexandre J., Carmo H., Carvalho F., Pedro Silva J. (2020). Synthetic cannabinoids and their impact on neurodevelopmental processes. Addict. Biol. 25:e12824. 10.1111/adb.12824 – DOI PubMed
    1. Al-Muhtasib N., Sepulveda-Rodriguez A., Vicini S., Forcelli P. A. (2018). Neonatal phenobarbital exposure disrupts GABAergic synaptic maturation in rat CA1 neurons. Epilepsia 59, 333–344. 10.1111/epi.13990 – DOI PMC PubMed
    1. Anderson L. L., Low I. K., McGregor I. S., Arnold J. C. (2020). Interactions between cannabidiol and Δ9-tetrahydrocannabinol in modulating seizure susceptibility and survival in a mousae model of Dravet syndrome. Br. J. Pharmacol. 177, 4261–4274. 10.1111/bph.15181 – DOI PMC PubMed
    1. Andre C. M., Hausman J. F., Guerriero G. (2016). Cannabis sativa: the plant of the thousand one molecules. Front. Plant Sci. 7:19. 10.3389/fpls.2016.00019 – DOI PMC PubMed

Schaka

Related Posts

Synthesis, characterization and stress-testing of a robust quillaja saponin stabilized oil-in-water phytocannabinoid nanoemulsion

Aurora Cannabis Faces Class-Action Lawsuit, Closing of Edmonton Facility

North Carolina Lawmakers May Postpone Vote on Medical Cannabis Legislation Until 2022

Dried matrix spots in forensic toxicology

Signez la pétition !!!

 

846 signatures

Pétition ASBL Cannabis Belgique

Pourquoi une pétition ?

Nous sommes des personnes qui en avons assez de devoir aller dans la rue et avoir affaire à des réseaux criminels sans savoir où cela va nous conduire par après.

Nous sommes des personnes ayant des maladies, qui pour certaines sont rares, et utilisant pour médication le cannabis sous diverses formes (CBD,THC,THCv,CBDa,,,) sous l'accord de notre médecin.

Nous sommes des personnes responsables et honnêtes qui avons une vie épanouie et sans problèmes de vie ou sociaux.

Nous avons également une passion pour la plante de cannabis en elle-même et la cultiver est notre bonheur. De plus, nous pouvons nous soigner avec notre médication sans avoir peur des produits ou autres additifs contenus dans une plante que l'on peut trouver autre part.

Nous souhaitons pouvoir avoir notre médicament dans les normes de la santé publique, car un cannabis sain aide à réduire les frais de santé parfois conséquents pour la collectivité et le malade lui-même.

Nous sommes également des personnes responsables avec un rôle dans la société qui en avons assez d’être considérés comme des « hippies ou autres drogués », nous avons juste choisi notre médication et celle-ci a apporté les preuves de son efficacité dans le monde.

Nous connaissons déjà les produits dérivés comme le CBD et le THC que nous maîtrisons pour nous aider dans notre maladie « Je précise que nous ne sommes pas médecin et que nous nous basons sur 20 ans d’expérience médicale du cannabis des membres de notre ASBL et l'avis du médecin de famille ».

Nous désirons simplement ne plus nous cacher, et pouvoir aider les autres personnes le souhaitant.

Nous somme soucieux des ados et de la prévention à leur égard. Effectivement, nous sommes les acteurs parfaits pour répondre aux questions qu’ils se posent vu notre expérience cannabique et, de plus, nous pourrons leur expliquer les risques qu’ils encourent en achetant du cannabis dans la rue.

Le projet complet peut être demandé via mail " info@mcb.care " et sur le site internet : " http://mcb.care "

@ASBL McB

**votre signature**

Partagez avec vos amis

Articles récents

Catégories